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Abstract. A so-called Renormalization Group (RG) analysis is performed in order to shed some light
on why the density of prime numbers in N

∗ decreases like the single power of the inverse neperian logarithm.

Part I
The most elementary proof
of the Prime Numbers Theorem

These few lines are not part of the proof. They simply
show the history which has led to the starting point of
our proof. The two main steps of it involve only formal
elementary algebra, with no recourse naturally to Func-
tions’ theory nor complex variables. Euler proved in 1747
[1], quite formally, that the prime numbers are linked with
natural integers, by establishing what is universally known
as “Euler identity” and which is so famous that we do not
recall it here.

From this identity, one can deduce straight forwardly
an approximate formula1 giving

(I)
∑
p<Λ

1/p = 1 · log(logΛ) + · · · .

This result has been refined, mainly by Mertens [2] with
the aim to establish the value of constants possibly en-
tering a much more exact expression of the sum in (I).
This expression, we call it “Euler-Mertens identity” and
is the starting point of our proof, the formula (1) of our
theorem.

Proof. Consider the Euler-Mertens identity (I), exact
when Λ → ∞. We introduce it under the following form
(1) and apply the RG analysis [3]

F̄ = (log logΛ)−1
∫ Λ dn n̄(n)

n
∼= Cte ∼= 1 , Λ → ∞ (1)

n̄(n)dn is a measure df(n) of the Stieltjes type and n̄(n)
can be considered as a density in the physical sense2.

1 Which, in fact, is the strict equivalent of Euler identities
2 df(n) = n̄(n)dn and, according to the result (3) f(Λ) =∫ Λ dn

log n
∼= Li(Λ)

Then, since

Λ ∂/∂ΛF̄

=
∂

∂ logΛ
(log logΛ)−1 ·

∫ Λ dnn̄(n)
n

+
n̄(Λ)

log logΛ

= −(logΛ)−1(log logΛ)−2 ·
∫ Λ dnn̄(n)

n
+

n̄(Λ)
log logΛ

one deduces, by the RG method, (since dF̄ /d logΛ = 0)

0 = − (logΛ)−1

log logΛ
· F +

n̄(Λ)
log logΛ

+
[

∂n̄(Λ)
∂ logΛ

]
δ

δn̄(Λ)
F̄

=
[−(logΛ)−1 + n̄(Λ)

]
(log logΛ)−1

+0
(

Λ−1

log2 Λ · log logΛ

)
. (2)

So from (2), at this approximation one gets

n̄(Λ) ∼= (logΛ)−1 , Λ � 1 (3)

which is the prime Numbers theorem, since the density

n̄(Λ) = Λ−1 · π(Λ)

Part II
The RG Equation for the Density
of Prime Numbers3

The density of natural integers is scale invariant:

λ
∂

∂λ
d̄(niλ, d̄(1)) = 0 , (4)

3 The RG-method has been designed in order to know how
the structure of a theory gets modified when the scale is
changed
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d̄ being the density around niλ, and λ ∂
∂λ the generator of

scale transformations of the natural integers.
If, on the other hand, ni is a prime and λni is around

another prime, say n′
i, then

d̄(n′
i
∼= λni, d̄(1)) �= d̄(ni, d̄(1)) .

In such a case, instead of having an equation like (4),
expressing the invariance for scale changes, one uses, as
is customary, the so-called Renormalization Group (RG)
equation (or better: renormalization transformation equa-
tion) which generally substitutes (4) when scale invariance
is broken. The strategy is to compensate the broken in-
variance, for example in the present case, by a density d̄,
which this time depends upon λ and is different from that
of (4), namely d̄(1). The RG equation, as is well known
[3], reads

λ
∂

∂λ
d̄(niλ, d̄(λ))+

[
λ∂

∂λ
d̄(λ)

]
∂

∂d̄(λ)
d̄(niλ, d̄(λ)) = 0 . (5)

Equation (5)4 introduces the quantity [λ ∂
∂λ d̄(λ)] ∂

∂d(λ)

which is a one-dimensional vector field V (d̄(λ)) on the
axis of integer numbers.

Now, the problem is to solve (5) for d̄.
This solution, as will be explained in the Appendix,

when taken between two different numbers N1 and N2,
turns out to be

1
d̄(N1)

− 1
d̄(N2)

= log
N1

N2
. (6)

But, perhaps, more instructively for the scope of this short
note,

d̄(t, d̄(0, d̄0) =
d̄(0, d̄0)

1 + t · d̄(0, d̄0)
(7)

with t = logN , exhibiting the neperian logarithmic single
power decrease as having its origin in the violation of the
scale invariance symmetry.

Indeed, if in the region of large primes (say between
1015 and 2 × 1017), the numerical results obtained by the
use of (6), formula (6) does not tell else that, for each
number N1 and N2,

N

π(N)
= logN

which is a 100 years-old, over-demonstrated asymptotic
result [4,5].

However, in this note, our aim is to look for the deep
reason why the density of primes decreases with the sin-
gle power of the natural logarithm. We hope that we have
been able to shed some light on this fact: the breaking of
a symmetry, namely that of scale invariance with gener-
ator λ ∂

∂λ , is the very factor responsible for this specific
decrease.

The coincidence of the results obtained is striking when
compared to the formulas of the first non-trivial approxi-
mation of Quantum ChromoDynamics (mutatis mutandis,
of course, the concepts between two such different fields).

4 niλ ∼= prime, as ni is

But a main common feature emerges: in both cases the
two fields are afflicted by the same broken symmetry, that
of scale invariance.

Appendix

1) For natural integers, scale invariance holds for the den-
sity d̄(n), i.e. when n → λn, d̄(n) = d̄(λn).

2) For primes pi,

pi → λpi
∼= pj , d̄(pj) �= d̄(pi) ,

so that d̄ becomes a function of λ.

One finds easily that a functional equation of the type

d̄(λni, d̄(λ)) = d̄(ni, d̄0) , (A.1)

(d̄0 fixed, and ni representing primes as well as λni in the
dose vicinity of nj , prime itself) exists.

The RHS is λ-independent and one gets at once

λ
∂

∂λ
d̄(λni

∼= nj , d̄(λ))

+
[
λ

∂

∂λ
d̄(λ)

]
∂

∂d̄(λ)
d̄(λni, d̄(λ)) = 0 . (A.2)

Or else, calling t = log λ and passing to logarithmic vari-
ables [

∂

∂t
+ V (d̄(t)

]
d̄(t + log ni, d(t)) = 0 (A.3)

with

V (d̄(t)) =
[

∂

∂t
d̄(t)

]
∂

∂d̄(t)
.

To solve (A.2), one proceeds in the following way

d̄(δt, d̄(0, d̄0)) = d̄(0, d̄(0, d̄0)

+δtV (d̄(0, d̄0)) · d̄(0, d̄0) + 0(δt2)

by Taylor-expanding d̄ around δt = 0.
According to the properties of flows of vector fields,

one has d̄(0, x) = x, that is, for example, d̄(0, d̄(0, d̄0)) =
d̄(0, d̄0) = d̄0, d̄0 being a fixed arbitrary density.

One gets then

d̄(δt, d̄0) − d̄0 = δtV (d̄0) · d̄0

or5

d̄(δt, d̄0) = (1 + δtV (d̄0))d̄0 (A.4)

5 In passing we recall a well-known property of the flows
d̄(t, x); namely they satisfy the one-parameter Abelian group:
d̄(s+t, x) = d̄(t, d̄(s, x)), i.e. the composition law d̄s+t = d̄t◦d̄s.
This group is trivially generated as the one-parameter group
of diffeomorphisms by the vector field V on the manifold con-
sidered. For details see [3]a)
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By theorems by Chebyshev and Mertens [6,2], V (x)
can be shown to be quadratic in its argument x.

It remains to exponentiate the RHS of (A.4):

d̄(t, d̄0) =
(
1 + tV (d̄0)

∂

∂d̄0
+

t2

2!
V (d̄0)

∂

∂d̄0

·V (d̄0)
∂

∂d̄0
+ · · ·

)
d̄0

=
d̄0

1 + td̄0
; (V (d̄0) = −d̄2

0 . see above) . (A.5)

Equation (A.5) is the formula (7) of the text and seems to
us to be an explanation we were searching for, to explain
the decrease of d̄(t, d0) with a single power of the natural
logarithm t = logN (Remember that d̄(t, · · ·) ≡ d̄(et, · · ·),
as (A.2) and (A.3) show without further comments.)

As a final remark, (6) follows straight forwardly from
(7) by trivial algebra.

Take (7) with two different values for t: t1 = logN1,
and t2 = logN2. It follows at once that

d̄−1(t1, d̄0) − d̄−1(t2, d̄0) = logN1/N2 .

(Additionally it confirms the arbitrariness of d̄0 which
might be chosen at will; d̄0 = 1, for example.)
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